RESULTS

• Three doses of weekly TransCon hGH1 compared to daily Genotropin, for Growth Hormone Deficiency (GHD) Treated with Lonapegsomatropin

METHODS

• Objective: predict an average weekly IGF-1 at steady state from a single IGF-1 sample任何时候 during a 7-day dosing week

BACKGROUND

• Once-weekly prodrug release unfolds IGF-1 designed to mimic daily hGH

• Tissue Distribution

• Pharmacokinetics levels

• Therapeutic efficacy, efficacy, and tolerability

Figure 1. TransCon hGH (lonapegsomatropin) Design

Figure 2. Dense Proportional IGF-1 Response in a Phase 2 Study

Figure 3. IGF-1 Profile at Week 13 (n=11)

Figure 4. Comparing ∆(d) of IGF-1 SDS From The Mixed Model With Taylor Series, And From Boxplots of Simulation From The Population PD Model at Week 52

Figure 5. Average IGF-1 SDS From an IGF-1 Sample at Steady State: Results From a Linear Mixed Model With Taylor Series

Figure 6. Average IGF-1 Concentration From an IGF-1 Sample at Steady State: Results From a Linear Mixed Model With Taylor Series

Conclusions

• A simple linear mixed model was established to predict weekly average IGF-1 for children with GHD on lonapegsomatropin based on a single sample at steady state using either IGF-1 SDS or concentration data

• This prediction has good accuracy from a single sample anytime during the dosing interval, with lowest estimation errors between days 2.5 and 5

• A mathematical nonlinear model was developing using IGF-1 data from the phase 2 trial and the heiGHt trial to predict full IGF-1 profiles and support calculation of average weekly IGF-1 concentration for single pediatric subjects from the heiGHt trial

• An innovative step function model with simultaneous zeros and first order of stimulation of IGF-1 production, first order clearance, and proportional error was selected as the final model

Key Inclusion Criteria

• Prepubertal children with GHD

• Height SDS ≤-2.0

• IGF-1 SDS ≤-1.0

• A 2 GH stimulation tests (GH ≤10 ng/mL)

• Bone age ≥6 months behind chronological

• IGF-1 SDS ≤-1.0

• 2 GH stimulation tests (GH ≤10 ng/mL)

• Separate linear regressions were utilized to bridge baseline (pre-dose) IGF-1 data before and after steady state

Statistical Analysis to Predict Average IGF-1 From a Single Sample of IGF-1

• A non-compartmental analysis (NCA) on the simulated profiles from the heiGHt trial

• An endogenous 1-compartment model with simultaneous

• Late IGF-1 profiles and support calculation of average weekly IGF-1

• Standard covariates were tested, e.g. age, weight, height, and sex. No significant covariates were identified as model parameters

• A non-parametric bootstrap approach was employed to verify that the final model adequately predicted both the central tendency and variability of the observed data

• A non-parametric bootstrap approach was employed to verify that the final model accurately predicted and with the observed data

Population Nonlinear Mixed-effect PD Model for IGF-1

• For an IGF-1 sample drawn 2.5 days post-dose, divide the sample concentration by 0.68

• For an IGF-1 sample drawn 5 days post-dose, add the measured value by 0.03

Conclusions

• For an IGF-1 sample drawn 2.5 days post-dose, divide the sample concentration by the ratio of 0.68

• For an IGF-1 sample drawn 5 days post-dose, divide the sample concentration by the ratio of 0.68

Acknowledgments

- Dr. Nicole E. M. Haas, Data Management/Statistical Analysis, Endocrine Research, Inc., Northbrook, IL, USA.
- Dr. Emily P. Cox, Management/Statistical Analysis, Endocrine Research, Inc., Northbrook, IL, USA.

All review processes and investigations were performed for exclusion of potential conflicts of interest and were carried out under the guidelines of Good Clinical Practice. The manuscript was prepared by the authors and reviewed and approved for publication by the Ascendis Pharma Group. Any potential conflicts of interest have been declared as appropriate.