An Estimate of the Global Birth Prevalence of Achondroplasia

Alden Smith Pharm D¹, Alexandra Hill MPH², Sarah Anderson MSc², Dorthe Viuff PhD³, Chelsea Catsburg PhD², Jonathan A Leff MD¹ ¹Ascendis Pharma Inc, Palo Alto, CA; ²BluePrint Orphan, New York, NY, ³Ascendis Pharma A/S, Copenhagen, Denmark

BACKGROUND

- Achondroplasia (ACH) is the most common skeletal dysplasia¹
- Little is known about its true birth prevalence, globally, as few recent studies have been published; studies vary by population, geography, and methodology
- With the advent of novel therapies, understanding the true prevalence is critical for clinical trial considerations

METHODS

- Comprehensive, targeted search of English language literature available in PubMed was conducted
 - Search terms used were MeSH "ACH" AND ("incidence" OR "prevalence" OR "epidemiology")
 - Flow diagram based on PRISMA guidelines² was generated
- Abstracts were reviewed for relevance and full-text articles assessed for inclusion based on the following criteria:
 - Study rigor (using the STROBE checklist³)

OBJECTIVE

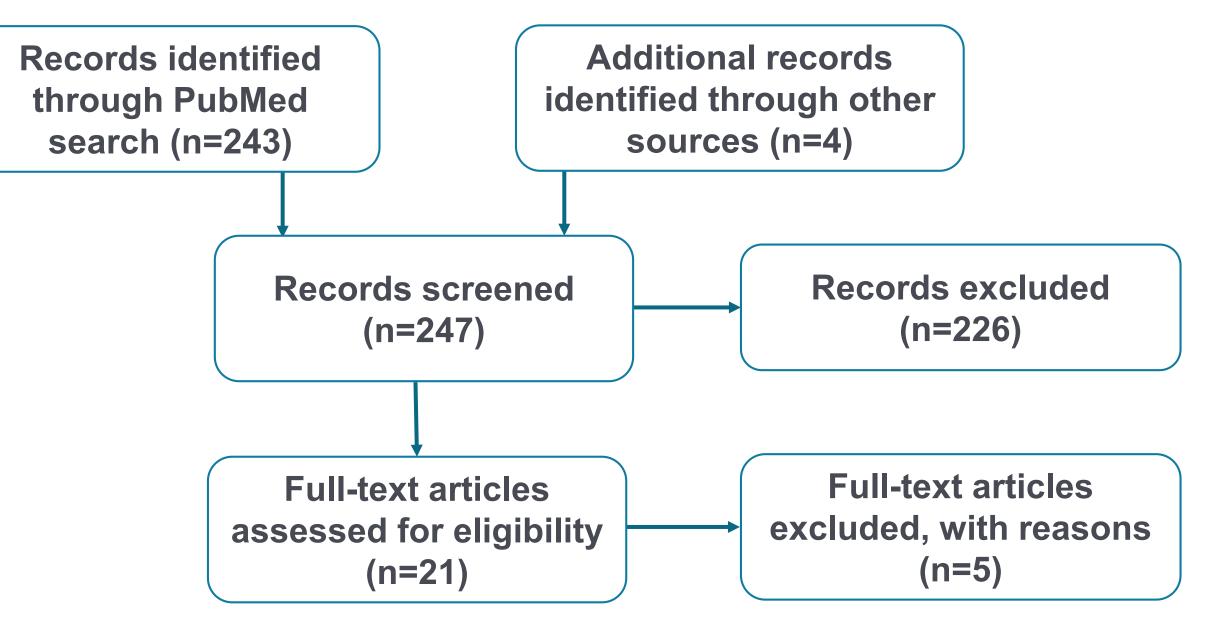
To estimate the global birth prevalence of ACH through meta-analysis of English-language literature available in PubMed

- Case ascertainment methodology
- Studies were excluded if methodology was not clearly described, or if the results were based on outdated registries from developing countries
- Meta-analysis of birth prevalence estimates was conducted using a random effects model ('meta' package, R)

• Heterogeneity was assessed using forest plots and Cochran's I²

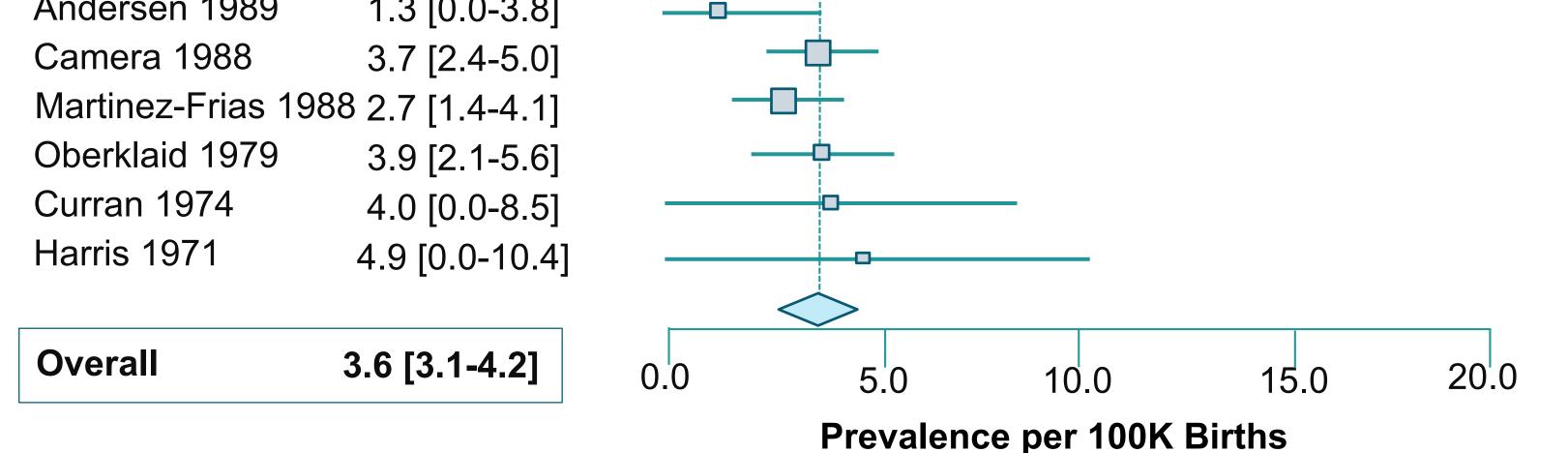
Table 1: Literature Estimates for Birth Prevalence of Achondroplasia

Source	Country	Observation/ Study Years	Achondroplasia Cases	Total Births	Birth Prev. per 100K
Coi 2019	Europe (multi-country)	1991-2015	350	11,475,410	3.1
Duarte 2018	Argentina	2009-2016	79	1,663,610	4.7
Nishigori 2017	Japan	2011-2014	7	95,994	7.3
Barbosa-Buck 2012	South America (multi-country)	2007-2007	68	1,544,496	4.4
Stevenson 2012	US	1999-2008	18	509,283	3.5
Moffitt 2011	US	1999-2006	91	2,993,421	3.0
Waller 2008	US	1968-2003	459	10,876,099	4.2
Rasmussen 1996	US	1972-1990	3	126,316	2.4
Higurashi 1990	Japan	1972-1985	3	27,472	10.9
Stoll 1989	France	1979-1986	7	105,374	6.6
Andersen 1989	Denmark	1970-1983	1	77,977	1.3
Camera 1988	Italy	1978-1985	31	838,717	3.7
Martinez-Frias 1988	Spain	1976-1985	15	553,270	2.7
Oberklaid 1979	Australia	1969-1975	19	492,889	3.9
Curran 1974	US	1964-1974	3	75,000	4.0
Harris 1971	UK	1951-1969	3	61,682	4.9


RESULTS

- Search strategy yielded 21 papers referencing ACH birth prevalence (Figure 1)
 - 16 papers published between 1971-2019 met the inclusion criteria and were included in the meta-analysis (Table 1)
- Meta-analysis yielded point estimate for birth prevalence of ACH of 3.6 [95% CI 3.1-4.2] per 100K births (Figure 2)
- Studies exhibited moderate heterogeneity $(I^2=63.9\%; p-value=0.0003)$

Figure 2: Forest Plot of Achondroplasia Birth Prevalence Estimates


	evalence Estimate po 100K Births [95% Cl]	
Coi 2019	3.0 [2.7-3.4]	
Duarte 2018	4.7 [3.7-5.8]	-0-
Nishigori 2017	7.3 [1.9-12.7]	
Barbosa-Buck 20	12 4.4 [3.4-5.5]	
Stevenson 2012	3.5 [1.9-5.2]	
Moffitt 2011	3.0 [2.4-3.7]	
Waller 2008	4.2 [3.8-4.6]	
Rasmussen 1996	2.4 [0.0-5.1]	
Higurashi 1990	1.1 [0.0-23.3]	
Stoll 1989	6.6 [1.7-11.6]	
Andersen 1989	1 3 [0 0-3 8]	

SUMMARY AND CONCLUSIONS

- The results of this analysis suggest the global birth prevalence of ACH was 3.6 per 100K or ~5,000 new cases worldwide, annually
- To our knowledge, this is the first estimate of the global birth prevalence of ACH
- Despite disparate study populations and periods, prevalence estimates were generally consistent across studies

REFERENCES: ¹Pauli RM. Achondroplasia: a comprehensive clinical review. Orphanet J Rare Dis. 2019;14(1):1; ² Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097; ³Von Elm. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-9.

This study was sponsored by Ascendis Pharma A/S.

Ascendis[®], the Ascendis Pharma logo, the company logo and TransCon[®] are registered trademarks owned by the Ascendis Pharma group. © September 2019 Ascendis Pharma A/S.

- Limitations: Studies varied in their reporting of birth prevalence-some included still births and/or terminations, and others looked only at live births. These discrepancies were not adjusted for in this analysis. Because of this, it is feasible that the *live* birth prevalence of ACH is slightly lower than the overall birth prevalence
- Conclusions: These data can be used to inform planning strategies for therapeutic services and healthcare utilization, and to estimate potential study populations in the advent of novel therapies for ACH